

ОБОРУДОВАНИЕ И РЕШЕНИЯ ДЛЯ ГЕОТЕХНИЧЕСКОГО МОНИТОРИНГА

Универсальная система мониторинга - это комплекс аппаратных и программных продуктов, позволяющий эффективно решить любые задачи в сфере современного геотехнического мониторинга.

Более чем 10-ти-летний опыт в области проектирования, монтажа и эксплуатации различных систем мониторинга позволил нам создать собственную линейку оборудования - измерительные датчики, контролирующие различные параметры, системы регистрации данных (в том числе беспроводные), программные комплексы. Оборудование может с успехом применяться как для локальных задач контроля отдельных параметров, так и для создания многоуровневых комплексных автоматизированных систем мониторинга различных объектов (в том числе СМИК).

При разработке наших продуктов мы учитывали опыт зарубежных партнеров, а также особенности эксплуатации оборудования в российских климатических условиях.

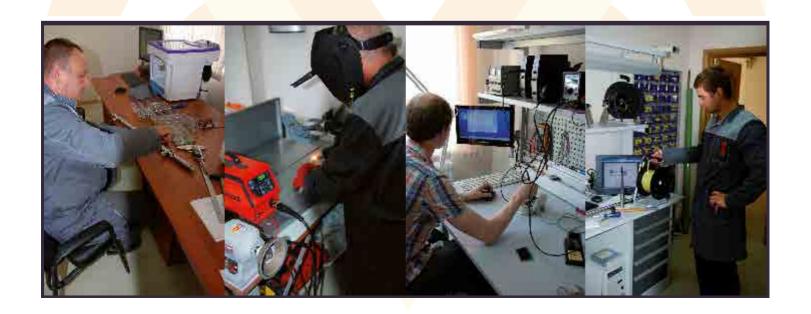
Наличие собственного производства, проектной группы и сервисного центра позволяет в максимально сжатые сроки решить любую нестандартную задачу по разработке, оснащению и вводу в эксплуатацию систем мониторинга различных строительных объектов с применением как готовых решений, так и с помощью разработки новых.

В ОСНОВЕ НАШИХ ПРЕИМУЩЕСТВ:

- Опыт работы компании в сфере геотехнического мониторинга более 10 лет
- Производство широкого спектра оборудования для геотехнического мониторинга по доступным ценам
- Наличие собственной производственной мощности, проектной и конструкторской групп
- Разработка специализированного оборудования под конкретные условия объекта и технические требования Заказчика
- Использование при производстве современных технологий и материалов
- Апробация и тестирование оборудования как на собственном испытательном полигоне, так и на большом количестве натурных объектов
- Оперативное обслуживание и ремонт оборудования, в том числе непосредственно на объекте мониторинга
- Всесторонняя профессиональная техническая и консультационная поддержка клиентов
- Реализация более 50-ти проектов по всей России с использованием нашего оборудования (Большой театр России, Олимпийские тоннели Адлер-Красная Поляна, транспортные тоннели в г.г. Сочи и Москве, объекты метрополитенов г.г. Москвы, Санкт-Петербурга, Нижнего Новгорода, соборы Московского Кремля, здание ГМИИ им. А.С. Пушкина, коллекторные тоннели в г. Москве, Курьяновские очистные сооружения, Белоярская АЭС и др.)

Наша лаборатория является инновационной и высокотехнологичной базой для разработки и производства современного оборудования в области геотехнического мониторинга.

На базе нашей производственной площадки осуществляются все основные производственные этапы: начиная от проектирования нового оборудования и производства основных компонентов, заканчивая проведением тестовых испытаний, калибровки и сервисного обслуживания.


При производстве оборудования нами выполняется большой спектр работ по металлообработке – токарные, сварочные и фрезерные работы. Для улучшения качества воспроизводимых деталей и приборов мы используем 3-D моделирование и программирование систем ЧПУ.

Также мы осуществляем проектирование, разработку, изготовление, программирование и наладку всей электротехнической составляющей нашей продукции.

В лаборатории предусмотрен испытательный комплекс, включающий различные калибровочные установки, испытательные площадки (в том числе опытный полигон для испытаний геотехнического оборудования, материалов и отработка технологий в грунтовом массиве).

Мы осуществляем полный комплекс гарантийного и пост<mark>гарантийн</mark>ого обслуживания: диагностику, ремонт и замену оборудования/компонентов.

Все это позволяет нам осуществлять производство оборудования, отвечающего самым высоким современным требованиям, а также разрабатывать приборы с учетом индивидуальных требований заказчика.

НАШИ УСЛУГИ

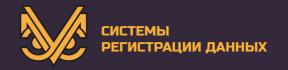
- Разработка, производство и продажа оборудования для геотехнического мониторинга
- Выполнение работ по мониторингу объектов всех уровней ответственности
- Разработка проектных решений по индивидуальным требованиям заказчика
- Предоставление оборудования в краткосрочную и долгосрочную аренду
- Консультационное и гарантийное обслуживание
- Обучение персонала заказчика работе с оборудованием

Артикул: УСМ

- Измерительный комплекс включен в Государственный Реестр средств измерений
- Простота монтажа и пуско-наладочных работ на объекте
- Длительный срок эксплуатации измерительных модулей (более 2-х лет беспрерывной работы на одном элементе питания)
- Передача данных по радиоканалу на большие расстояния (до 500 метров)
- Высокая устойчивость к атмосферным воздействиям
- Круглосуточный защищенный доступ к результатам измерений при публикации данных на Интернет-портале
- Своевременное оповещение заинтересованных лиц в случае превышения заданных пороговых значений

Беспроводной измерительный комплекс УСМ предназначен для автоматизированного измерения электрических сигналов от первичных преобразователей, накопления результатов измерений во внутренней памяти и передачи их по цифровому беспроводному интерфейсу в компьютерные системы с целью проведения долговременных периодических измерений различных контролируемых параметров при решении задач геотехнического мониторинга.

В конструкцию УСМ заложен блочный принцип построения узлов системы, состоящей из беспроводных измерительных модулей и базовых блоков, а также программного комплекса.

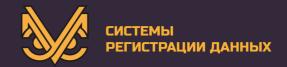

Применение различных интерфейсных плат делает

возможным подключение больш<mark>инства классов первичных</mark> преобразователей – струнных, потенциометрических, MEMS, с выходом по току и напряжению, тензорезисторов, и др.

Блоки системы УСМ оборудованы разъемами и гермовводами, защищающими от попадания внутрь влаги и пыли, а также позволяющими использовать их в сложных атмосферных условиях.

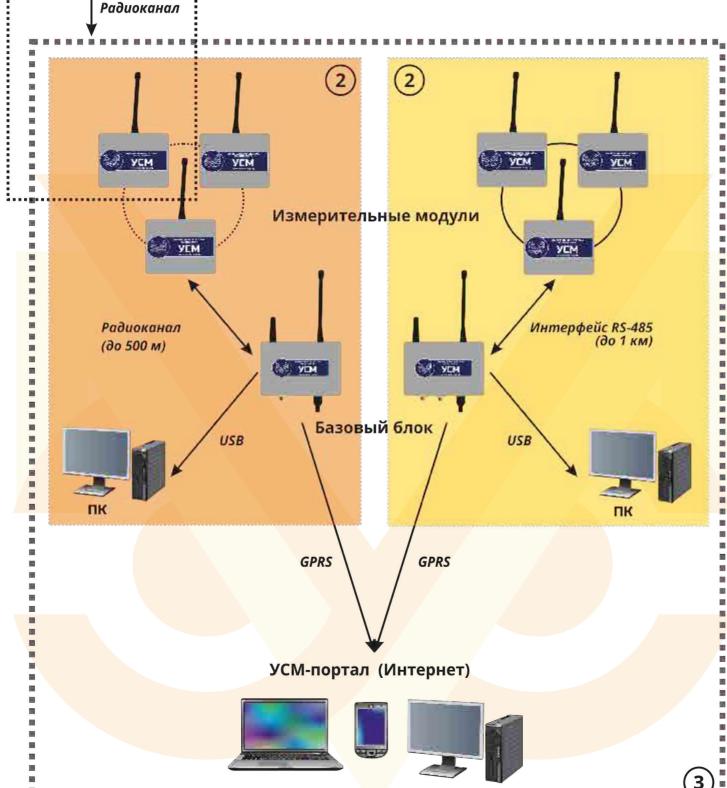
Артикул: УСМ

Характеристики базового блока


Канал передачи	GPRSmultislot 12
Диапазон измерений	EGSM850,GSM900,GSM1800,GSM1900
Мощность излучения	31,9 мВт
Чувствительность	-105 дБм
Периодичность передачи информации	от 300 до 6000 с
Точность установки временных параметров	0,1 c
Режим работы	долговременный
Программирование алгоритмов работы	дистанционное
Напряжение питания	220 В, 50 Гц
По <mark>требляемая м</mark> ощность	не более 20 Вт
Рабочая температура	от -30°C до +40°C
Macca	не более 2 кг

Характеристики измерительных модулей УСМ-ИМН

Диапазон измерения напряжения постоянного тока	от 0 до 3 В
Предел дополнит. приведенной погрешности измерения напряжения постоянного тока	± 0,5%
Напряжение питания моста	от 3 до 4 В
Диапазон измерения напряжения разбаланса моста	±10 MB
Предел доп. приведенной погрешности измерения напряжения разбаланса моста	± 0,03%
Диапазон измерения силы постоянного тока	от 0 до <mark>20 мА</mark>
Предел допускаемой приведенной погрешности измерения силы постоянного тока	± 0,5%
Амплитуда входного сигнала	от 5 до 50 мВ
Диапазон измерения частоты переменного тока	от 500 до 5000 Гц
Предел допускаемой абсолютной погрешности измерения частоты переменного тока	± 0,5 Гц
Диапазон измерения сопротивления	от 0 до 10 кОм
Предел допускаемой приведенной погрешности измерения сопротивления	± 0,1%
Напряжение источника питания	3,6 B
Габаритные размеры корпуса (Д × Ш × В)	115 мм × 90 мм × 55 мм
Macca	не более 0,7 кг


Рабочая температура от -30°C до +40°C

Артикул: УСМ

- 1 локальный режим измерений
- 2 полуавтоматический режим измерений
- 3 сетевой автоматизированный режим измерений

Артикул: УСМ

Возможные схемы работы системы на объекте контроля

Локальный режим

Измерения накапливаются в памяти модулей и периодически считываются оператором по радиоканалу с применением портативной USB-базы.

Полуавтоматический режим

Данные с измерительных модулей, расположенных в зоне покрытия радиосигнала от базового блока (до 500 метров), передаются с заданным интервалом на базовый блок с возможностью их последующей передачи на локальный компьютер.

Сетевой автоматизированный режим

Данные с измерительных модулей передаются на базовый блок, который с заданным временным интервалом отправляет их на удаленный ftp-сервер. Данные с ftp-сервера обрабатываются и поступают в базу данных специализированного ПО УСМ-Портал.

В рамках одного проекта данные могут поступать с нескольких базовых блоков, расположенных в разных местах. Данный программный комплекс предоставляет возможность on-line публикации результатов мониторинга с предоставлением защищенного паролем доступа для зарегистрированных пользователей.

Среди возможностей ПО: отображение результатов наблюдений в виде интерактивных пиктограмм и цветовых индикаторов на графических схемах объекта, построение различных типов графиков и таблиц с результатами измерений, оповещение пользователей в случае превышения заданных пороговых значений и многое другое.

Области применения

Здания и сооружения

Мосты

Атомная промышленность

Тоннели

Грунтовые и скальные массивы

Уникальные и технически сложные объекты

Памятники архитектуры

Ж/д полотно и насыпи

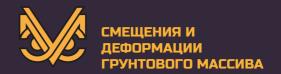
Гидротех. сооружения

Трубопроводы

Принцип <mark>работы системы</mark>

Измерительный м<mark>одуль УСМ р</mark>аботает следующим образом.

Измеряемая величина преобразуется при помощи измерительных сенсоров в электрический сигнал, который обрабатывается измерительными преобразователями.


В измерительных преобразователях системы производится накопление проведенных измерений от измерительных сенсоров, нормирование их по величине и последующая передача результатов по радиоканалу или по проводной линии связи в базовый блок системы.

Базовый блок системы производит накопление результатов измерения от измерительных преобразователей

системы с возможностью последующей передачи через сотовые сети связи формата GSM конечному потребителю.

Направляющие трубы для инклинометров

Артикул: УСМ-НТИ

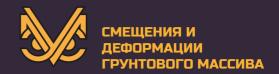
- Обладают высокой прочностью и гибкостью
- Надежные встроенные в трубы самоцентрирующиеся соединительные муфты обеспечивают быструю стыковку и точное сопряжение направляющих пазов
- Конструкция труб позволяет не допустить закручивание измерительной колонны по глубине, а также заклинивание зонда инклинометра в процессе проведения измерений
- Малая масса труб облегчает процесс установки
- Невысокая стоимость труб позволяет сократить общие затраты на монтаж и оснащение измерительных скважин
- После установки трубы могут эксплуатироваться на протяжении длительного времени

Специальные трубы из высококачественного пластика ABS (акрилонитрил-бутадиен-стирола) с системой быстрой стыковки предназначены для проведения измерений с использованием инклинометров разнообразных конструкций по контролю деформаций грунтового массива и различных сооружений.

На внутренней поверхности труб предусмотрены четыре специальных продольных направляющих паза, расположенных под углом 90 градусов друг к другу. Эти пазы предназначены для правильного расположения зонда инклинометра внутри труб в ходе проведения измерений.

Соединение секций труб между собой осуществляется с помощью системы быстрой стыковки. Для этого с одной стороны секции имеется направляющая выемка, а с другой –

самоцентрирующаяся муфта с выступом.


В процессе эксплуатации колонна из направляющих труб деформируется вместе с окружающим грунтовым массивом или конструкцией, что позволяет измерять смещения контролируемых объектов в различных направлениях с помощью цифровых инклинометров.

Измерения проводятся путем построения инклинометрических профилей.

Внутренний диаметр	60 мм ± 0.8 мм
Внешний диаметр	70 мм ± 0.5 мм
Macca	970 г/м: ±5%
Длина секции	3 M
Материал	ABS пластик
Плотность	1,0 ± 0,1 г/см ³
Прочность на разрыв	≥ 40 MПa
Предельное удлинение	≥ 10%
Температура размягчения	≥ 100°C
Разрушающее давление	8 бар при 20°C

Магнитный экстензометр

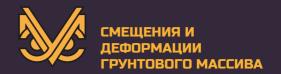
Артикул: УСМ-МЭС

- Надежная и точная система измерений, удобная и простая в эксплуатации
- Удобство комбинирования результатов замеров с показаниями инклинометра и получение измерений в трехмерном формате
- Возможность контроля неограниченного количества целей в одной контрольной скважине
- Экономичность: один измерительный датчик может считывать информацию со всех точек контроля
- Удобная световая и звуковая индикация при контакте зонда с магнитными целями
- Универсальность системы: благодаря разнообразию типов магнитных целей подходит для различных грунтов и пород

Магнитный экстензометр предназначен для контроля вертикальных смещений грунтового массива. С помощью данного оборудования можно определить как осадку, так и вспучивание грунта на различных глубинах в местах расположения магнитных целей вдоль трубы доступа.

Измерительная система состоит из датчика со встроенным герконом, стальной измерительной ленты в полиуретановой оболочке, смотанной на катушку, а также трубы доступа, на внешней стороне которой с заданными интервалами размещаются кольцевые магнитные цели.

Датчик с герконовым реле перемещают внутри трубы доступа, предварительно установленной в скважине.


Попадая в магнитное поле цели, цепь реле замыкается. При этом на катушке срабатывает световая и звуковая индикация. Расстояние от устья ск<mark>важины до магнитной цели</mark> определяется с помощью измер<mark>ительной стальной ленты с</mark> нанесенной миллиметровой разметкой.

Возможно использование нескольких типов кольцевых магнитных целей: реперные магниты (устанавливаются в нижней несжимаемой толще грунта), магниты лепесткового типа (трех- или шестилепестковые), закрепляемые распорными фиксаторами в стенках скважины, а также плоские магниты для размещения в грунте при поэтапной засыпке и добавлении очередных трубных секций в процессе строительства.

Измерительный диапазон	30 50 100 150 200 м
Разрешающая способность	1 мм
Рабочая температура	от -30°C до +80°C
Материал зонда	Нержавеющая сталь 12X18H10T
Диаметр зонда (без центратора)	15 мм
Время непрерывной работы	20 часов
Тип аккумулятора	9V, 6LR
Материал измерительной ленты	Стальная лента в полиуретановой оболочке
Градуировка ленты	мм/см/м
Индикация	Световая/Звуковая
Материал катушки	Стальная рама, барабан из ABS-пластика

Вертикальный скважинный инклинометр

Артикул: УСМ-ИСП-В

- Высокая точность измерений благодаря использованию MEMS-датчиков
- Армированный кевларом кабель имеет высокую прочность при малой массе
- Яркий LED-дисплей, встроенный в блок передачи данных, значительно облегчает работу с инклинометром
- Подпружиненные роликовые элементы с подшипниками повышенной износостойкости позволяют правильно располагать зонд внутри иклинометрической скважины
- Мобильный регистратор, имеющий пыле-/влагозащищенную конструкцию (IP 68) с большим сенсорным дисплеем позволяет снимать показания, а также производить первичную обработку и визуализацию результатов измерений

Цифровой вертикальный скважинный инклинометр предназначен для измерения горизонтальных смещений строительных конструкций и грунтового массива (в специально оснащенных вертикальных скважинах).

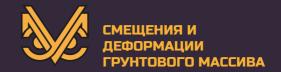
Система инклинометра включает двухосевой водонепроницаемый измерительный зонд, соединенный с помощью легкого, прочного, армированного кевларом кабеля с блоком передачи данных, встроенным в кабельную катушку.

Управление процессом измерения осуществляется с помощью мобильного регистратора на основе Android-смартфона по беспроводному каналу Bluetooth.

Измерительный зонд оснащен двумя MEMSакселерометрами и гироскопом, позволяющими получать высокоточные и воспроизводимые цифровые измерения.

Для позиционирования измерительного зонда по глубине кабель инклинометра оснащен системой стальных цилиндрических маркеров, расположенных с шагом 0,5 м.

Результаты измерений передаются от зонда инклинометра к блоку передачи данных по кабелю и далее по беспроводному каналу Bluetooth на мобильный регистратор.


В качестве регист<mark>ратора возможно использовать любой смартфон на базе Android с установленным ПО.</mark>

Специализированное ПО позволяет производить первичную обработку результатов измерений в натурных условиях.

Измерительный диапазон	30° 60° 90°
Разрешающая способность	±0.01 мм
Рабочая температура	от -30°C до +80°C
Точность измерен <mark>ий системы</mark>	±2 мм (30°) ± 3 мм (60°) ±4 мм (90°)
Точность измерений зонда	±0.1 мм (30°) ± 0.17 мм (60°) ±0.2 мм (90°)
Время непрерывной работы	10 часов
Измерительная база/диаметр зонда	500 мм/30 мм
Мин. диаметр направляющей трубы	40 мм
Макс. диаметр направляющей трубы	90 мм
Размеры катушки	483 мм × 385 мм × 315 мм
Длина кабеля	30 50 100 150 200 250 м

Скважинный цельностержневой экстензометр

Артикул: УСМ-ЭСЦ

- Высокая точность измерений
- Надежность конструкции
- Возможность установки в скважины любой пространственной ориентации
- Монтаж системы проще и быстрее, чем традиционных систем стержневых экстензометров
- Возможность устанавливать до 8-ми комплектов стержней с анкерами в одну скважину
- Стержни и анкеры поставляются в предварительно собранном виде под указываемую заказчиком длину
- Углепластик менее чувствителен к коррозии и изменениям температуры, чем сталь

Цельностержневые экстензометры обеспечивают точное измерение вертикальных смещений грунтового или породного массива в одной или нескольких анкерных точках по глубине скважины относительно реперного элемента, установленного на поверхности.

Измерения деформаций грунтового массива на разных глубинах осуществляют с помощью специальных анкеров, жестко закрепленных в массиве на заданной глубине. Для передачи вертикальных смещений анкера на реперный элемент используется протяженный стеклопластиковый стержень. Один конец стержня крепится к анкеру, а другой заводится внутрь реперного элемента.

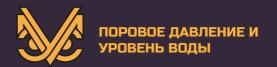
Вертикальные смещения анкера регистрируются путем измерения перемещения верхней части стержня

Количество точек измерения

относительно реперного элемента.

Возможно применение различных видов анкеров в зависимости от типа грунта или породы, а также метода установки (гидравлические, цементируемые, инъектируемые пакер-анкеры).

В одну измерительную скважину возможно устанавливать до 8-ми комплектов стержней с анкерами, установленными на различных глубинах.


Данный тип экстензометров используют в скважинах глубиной до 100 м.

до 8

Измерительный диапазон	50 100 150 200 300 500 700 мм
Материал стержней	Стеклопластик в пластиковой оболочке
Материал муфты	Полиэтилен
Материал реперн <mark>ого элемента</mark>	Нержавеющая сталь 12X18H10T
Разрешающая способность	В завимости от регистрирующей аппаратуры
Размеры (длина × диаметр)	35 мм × 830 мм
Рабочая температура	от -30°C до +100°C

Стандартный струнный пьезометр

Артикул: УСМ-ПСС-С

- Качество передачи сигнала от датчика к регистрирующему устройству не зависит от длины кабеля (до 1,2 км)
- Длительный срок службы, долгосрочная стабильность и надежность при низкой стоимости
- Нагрузки, действующие на корпус, не сказываются на точности измеренных значений
- Простота использования и установки, легкий монтаж в трубах и напорных емкостях
- Возможность измерения отрицательного порового давления
- Малое время отклика даже на небольшие изменения давления
- Встроенный термистор для контроля температуры

Стандартный струнный пьезометр используется для проведения измерений порового давления воды в грунтах, насыпях, под набережными, вокруг тоннелей и других горных выработок, а также в основаниях различных зданий и сооружений.

Его применение обеспечивает получение точных количественных данных о величине порового давления, а также об его изменениях с течением времени.

Измерение порового давления помогает оценить поведение грунтов до, во время и после строительства, а также определить потенциально опасные условия, которые могут негативно повлиять на устойчивость сооружений.

Датчик изготавливается из высококачественной нержавеющей стали и рассчитан на измерение порового давления воды в диапазоне от 0 до 10 МПа (стандартно), но может измерять и отрицательное поровое давление.

Датчик имеет встроенны<mark>й термистор для измерения</mark> температуры и стабилизатор для защиты от перепадов напряжения.

Измерительный диапазон	0.2 0.35 0.5 0.7 1 1.5 2 3.5 5 10 MHa
Точность	стандартно ±0.25% измерительного диапазона под заказ ±0.1% измерительного диапазона
Нелинейность	±0.5% измерительного диапазона
Рабочая температура	от -20°С до +80°С
Компенсированная температура	от 0°С до +80°С
Сопротивление изоляции	Более, чем 500 МОм на 12 В
Допустимое превышение изм.диапазона	150% измерительного диапазона

Тип термистора YSI 44005 или эквивалентный

Компактный струнный пьезометр

Артикул: УСМ-ПСС-К

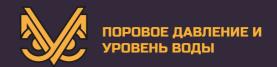
- Качество передачи сигнала от датчика к регистрирующему устройству не зависит от длины кабеля (до 1,2 км)
- Длительный срок службы, долгосрочная стабильность и надежность при низкой стоимости
- Нагрузки, действующие на корпус, не сказываются на точности измеренных значений
- Простота использования и установки, легкий монтаж в трубах и напорных емкостях
- Возможность измерения отрицательного порового давления
- Малое время отклика даже на небольшие изменения давления
- Компактность

Компактный струнный пьезометр специально сконструирован для точных измерений порового давления воды в полностью или частично водонасыщенном грунте при помощи скважин или труб небольшого диаметра.

Измерение порового давления помогает оценить поведение грунтов до, во время и после строительства, а также определить потенциально опасные условия, которые могут негативно повлиять на устойчивость сооружений.

Датчик изготавливается из высокока чественной нержавеющей стали и рассчитан на измерение порового давления воды в диапазоне от 0 до 2 МПа (стандартно), но может измерять и отрицательное поровое давление.

Датчик имеет встроенный термистор для измерения температуры и стабилизатор для защиты от перепадов


напряжения.

Данный пьезометр поста**вляется в комплекте с** керамическим дисковым фильтром с низкой воздухопроницаемостью.

Измерительный диапазон	0.35 0.5 0.7 1 1.5 2 МПа
Точность	стан <mark>дартно ±0.2% измерительного диа</mark> пазона
	под заказ ±0.1% измерительного диапазона
Нелинейность	±0.5% измерительного диапазона
Рабочая температура	от -20°С до +80°С
Компенсированная температура	от 0°С до +80°С
Сопротивление изоляции	Более, чем 500 МОм на 12 В
Допустимое превышение изм.диапазона	150% измерительного диапазона
Тип термистора	YSI 44005 или эквивалентный
Размеры (диаметр × длина)	19 мм × 155 мм

Пьезометрическая труба (пьезометр Касагранде)

Артикул: УСМ-СПК

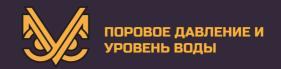
- Трубы изготовлены из прочного ПВХ и не подвержены коррозии
- Возможна установка труб после завершения строительства посредством бурения скважин на необходимую глубину
- _ Длительный срок службы при низкой стоимости
- Простота использования и установки
- Изготовлены по проверенной временем технологии

Пьезометрические трубы, также называемые пьезометрами Касагранде, применяют для измерения порового давления и уровня грунтовых вод в вертикальных скважинах в водонасыщенных грунтах. Такие пьезометры более чувствительны к изменению давления воды и более устойчивы к заиливанию, чем обычная гидронаблюдательная скважина.

Благодаря своей простоте и надежности пьезометрические трубы могут быть использованы в дренажных тоннелях и зацементированных водоводах.

Возможна установка труб после завершения строительства посредством бурения скважин на необходимую глубину.

Применение пьезометрических труб обеспечивает


получение точных количественных данных о величине порового давления и уровне грунтовых вод, а также об их изменении с течением времени.

ФИЛЬТР

Длина	20 40 60 мм
Внешний диаметр	37 мм
Внутренний диаметр	25 мм
Материал ТРУБА	Карборунд или Аллундум
Длина	Под заказ
Внешний диаметр	25 мм
Толщина стенок	1.5 мм
Материал	ПВХ

Скважинный портативный уровнемер

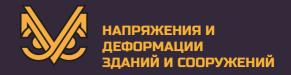
Артикул: УСМ-УСП/УСМ-УСП-Т

- Простота, надежность и удобство применения
- Подходит для контроля вод в скважинах малого диаметра
- Портативность и малая масса прибора делают его применение универсальным и экономичным
- Нерастягивающаяся стальная лента с полиуретановым покрытием препятствует прилипанию к влажным поверхностям
- Удобная звуковая и световая индикация при контакте зонда с водой упрощает процесс измерений
- Прибор оснащен ярким OLED-дисплеем с автоматическим поворотом, предназначенным для представления результатов температурных измерений (опция)

Скважинный портативный уровнемер предназначен для измерения уровня грунтовых вод и температуры в гидронаблюдательных скважинах, колодцах, водозаборных скважинах и пьезометрах Касагранде.

Прибор состоит из зонда из нержавеющей стали 12X18H 10T и измерительной ленты в полиуретановой оболочке, смотанной на катушку.

В корпус катушки встроена система световой и звуковой индикации при контакте зонда с водой.


Уровнемер прост в эксплуатации и может применяться для периодического контроля большого числа различных объектов. Конструкция измерительной ленты препятствует ее прилипанию к влажным поверхностям скважины, что обеспечивает точность измерений.

Имеется два варианта скважинных уровнемеров: с цифровым датчиком температуры и без него.

Измерительный диапазон	30 50 100 150 200 м
Разрешающая способность	1 мм
Рабочая температура	от -30°C до +80°C
Материал зонда	Нержавеющая ста <mark>ль 12X18H10T</mark>
Длина/диаметр зонда	180 мм/15 мм
Время непрерывной работы	20 часов
Тип аккумулятора	9V, 6LR
Материал измерительной ленты	Стальная лента в полиуретановой оболочке
Градуировка ленты	мм/см/м
Ширина ленты	10 мм
Материал катушки	Стальная рама, барабан из ABS-пластика
Индикация	Световая/Звуковая

Механический трехосевой трещиномер

Артикул: УСМ-МТТ

- Основные элементы изготовлены из нержавеющей стали и не подвержены коррозии
- Низкая стоимость
- Простота использования и установки
- Длительный срок службы
- Измерения проводятся сразу по трем осям
- Простое обслуживание
- Олгосрочная надежность и стабильность

Механический трехосевой трещиномер предназначен для контроля в трехмерном пространстве положения различных конструкционных швов и трещин. Его используют в случаях, когда на объекте достаточно выполнять периодическое снятие показаний в ручном режиме.

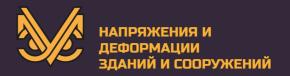
Трещиномер состоит из двух частей: измерительного плеча из нержавеющей стали и реперного элемента в виде параллелепипеда (также выполненного из нержавеющей стали). Обе части трещиномера крепятся к контролируемой конструкции с помощью замоноличиваемых анкерных элементов.

Анкерные арматурные стержни монтируют по обеим сторонам от шва или трещины, подлежащих мониторингу. При этом их либо погружают в свежеуложенный бетон в

процессе, либо устанавливают в <mark>специально подготовленные отверстия и фиксируют с помощью быстротвердеющих цементных или эпоксидных растворов.</mark>

Съемное пластиковое приспособление из пластика поддерживает две части трещиномера в правильном положении на середине измерительного диапазона до тех пор, пока раствор наберет достаточную прочность. После схватывания раствора производят первичные измере- ния с использованием ручного микрометра.

Далее, для получения данных об изменении раскрытия шва или трещины, производят периодические измерения и вычитают полученные значения из первоначальных.


Измерительный диапазон	±13 мм в направлениях X, Y, Z
Точность	В зав <mark>исимости от ре</mark> гистрирующе <mark>й апп</mark> аратуры
Материал	Нержавеющая сталь 12Х18Н10

Размеры (длина × ширина × высота)

190 мм × 105 мм × 200 мм

Струнный накладной тензометр (установка дуговой сваркой)

Артикул: УСМ-ТНС-Д

- Качество передачи сигнала от датчика к регистрирующему устройству не зависит от длины кабеля (до 1,2 км)
- Высокая устойчивость к коррозии
- Длительный срок службы, долгосрочная стабильность и надежность
- Возможность проведения измерений как в ручном режиме, так и в автоматическом (при долгосрочном дистанционном мониторинге)
- Встроенный термистор для контроля температуры
- Возможность предустановки измерительного диапазона под сжатие или растяжение
- Встроенный стабилизатор для защиты от перепадов напряжения

Струнный накладной тензометр (установка дуговой сваркой) предназначен для оценки напряженно-деформированного состояния металлических и бетонных конструкций.

Он работает по принципу стандартных струнных датчиков.

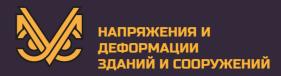
Датчик устанавливают на стальные конструкции и арматурные стержни при помощи концевых анкеров, которые приваривают на контролируемую поверхность дуговой сваркой.

Установка тензометра на бетонную поверхность осуществляется с помощью специальных механических анкеров.

Коэффициент тензочувствительности

Датчик изготовлен из нержавеющей стали и имеет

водонепроницаемый корпус.


Деформация конструкции, к которой прикреплен тензометр, приводит к изменению расстояния между концевыми анкерами и, соответственно, к изменению резонансной частоты колебаний струны. Эти колебания фиксируются электромагнитной катушкой датчика и преобразуются в электрический сигнал той же частоты. Сигнал может быть передан на большие расстояния без искажений.

около $4,051 \times 10^{-3}$ мкстрейн/Гц²

Измерительный диапазон	3000 мкстрейн
Разрешающая способ <mark>ность</mark>	1 мкстрейн
Активная длина	150 мм
Рабочая температ <mark>ура</mark>	от -20°C до +8 <mark>0°C</mark>
Размеры (длина × ширина × высота)	174 мм × 28,5 мм × 30 мм
Подсоединение кабелей	4-х-жильный экранированный кабель длиной 1 м/под заказ
Тип термистора	YSI 44005 или эквивалентный (3 кОм при 25°C)

Струнный малогабаритный тензометр (установка точечной сваркой)

Артикул: УСМ-ТНС-Т

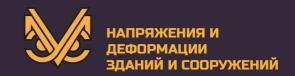
- Качество передачи сигнала от датчика к регистрирующему устройству не зависит от длины кабеля (до 1,2 км)
- Высокая устойчивость к коррозии
- Длительный срок службы, долгосрочная стабильность и надежность
- Возможность проведения измерений как в ручном режиме, так и в автоматическом (при долгосрочном дистанционном мониторинге)
- Встроенный термистор для контроля температуры
- Возможность предустановки измерительного диапазона под сжатие или растяжение
- Встроенный стабилизатор для защиты от перепадов напряжения

Струнный малогабаритный тензометр (установка точечной сваркой) предназначен для оценки напряженно-деформированного состояния металлических и бетонных конструкций.

Он работает по принципу стандартных струнных датчиков.

Датчик с помощью специальных крепежных хомутов устанавливают на плоские поверхности посредством точечной сварки или эпоксидного клея, после чего накрывают защитным корпусом с электромагнитом.

Установка тензометра на бетонную поверхность осуществляется с помощью эпоксидного клея.


Деформация конструкции, к которой прикреплен тензометр, приводит к изменению расстояния между

концевыми анкерами и, соответственно, к изменению резонансной частоты колебаний струны. Эти колебания фиксируются электромагнитной катушкой датчика и преобразуются в электрический сигнал той же частоты. Сигнал может быть передан на большие расстояния без искажений.

Измерительный диапазон	3000 мкстрейн	
Разрешающая спосо <mark>бность</mark>	1 мкстрейн	
Активная длина	50,8 мм	
Начальная частот <mark>а</mark>	1,925 - 2,325 Гц	
Размеры (длина × ширина × высота)	62 мм × 12,5 мм × 7,5 мм	
Рабочая температура	от -20°С до +80°С	
Тип термистора	YSI 44005 или эквивалентный (3 кОм при 25°C)	
Подсоединение кабелей	4-х-жильный экрани <mark>рованный кабель длиной 1 м / под заказ</mark>	
Коэффициент тензочувствительности	около 3,896 × 10 [−] 4 мкстрейн/Гц²	

Замоноличиваемый струнный тензометр

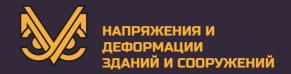
Артикул: УСМ-ТЗС

- Качество передачи сигнала от датчика к регистрирующему устройству не зависит от длины кабеля (до 1,2 км)
- Высокая устойчивость к коррозии
- Длительный срок службы, долгосрочная стабильность и надежность
- Возможность проведения измерений как в ручном режиме, так и в автоматическом (при долгосрочном дистанционном мониторинге)
- Встроенный термистор для контроля температуры
- Возможность предустановки измерительного диапазона под сжатие или растяжение
- Полная герметичность

Замоноличиваемый струнный тензометр предназначен для измерения относительных деформаций в железобетонных конструкциях.

Его применяют для измерения напряжений в подземных выработках (включая тоннели), зданиях, бетонных и каменных плотинах и т.д.

Датчик работает по принципу стандартных струнных датчиков, изготовлен из нержавеющей стали и полностью водонепроницаем.


Деформация конструкции, в которую замоноличен тензометр, приводит к изменению расстояния между фланцами, что в свою очередь приводит к изменению резонансной частоты колебаний струны. Эти колебания фиксируются электромагнитной катушкой датчика и

преобразуются в электрический сигнал той же частоты. Сигнал может быть передан на большие расстояния без искажений.

Измерительный диапазон	3000 мкстрейн		
Разрешающая способность	1 мкстрейн		
Активная длина	150 мм		
Рабочая темпера <mark>тура</mark>	от -20°C до +80°C		
Размеры (длина × ширина × высота)	170 мм × 28,5 мм × 30 мм		
Подсоединение кабелей	4-х-жильный экранированный кабель длиной 1 м / под заказ		
Тип термистора	YSI 44005 или эквивалентный (3 кОм при 25°C)		
Коэффициент тензочувствительности	около 4,051 × 10 ^{−3} мкстрей <mark>н/Гц²</mark>		

Герметичный струнный тензометр

Артикул: УСМ-ТГС

- Качество передачи сигнала от датчика к регистрирующему устройству не зависит от длины кабеля (до 1,2 км)
- Высокая устойчивость к коррозии
- Длительный срок службы, долгосрочная стабильность и надежность
- Возможность проведения измерений как в ручном режиме, так и в автоматическом (при долгосрочном дистанционном мониторинге)
- Встроенный термистор для контроля температуры
- Уникальный метод обжимки жил соединительных кабелей
- Полная водонепроницаемость и высокая устойчивость к коррозии

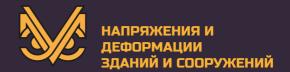
Герметичный струнный тензометр предназначен для оценки напряженно-деформированного состояния строительных конструкций.

Он подходит как для замоноличивания в бетон, так и для монтажа сваркой на стальных конструкциях.

Тензометр работает по принципу стандартных струнных датчиков.

При его изготовлении применяются новейшие технологии, позволяющие проводить дистанционный мониторинг напряженно-деформированного состояния таких объектов, как дамбы, мосты, здания, подземные выработки (включая тоннели и шахты), стальные конструкции и др.

Датчик герметично запаян электронно-лучевой сваркой


под вакуумом 1/1000 торр, что исключает возможность попадания внутрь влаги и коррозии.

Деформация конструкции, в которую замоноличен тензометр, приводит к изменению расстояния между фланцами, что в свою очередь влечет за собой изменение резонансной частоты колебаний струны. Эти колебания фиксируются электромагнитной катушкой датчика и преобразуются в электрический сигнал той же частоты. Сигнал может быть передан на большие расстояния без искажений.

Измерительный диапазон	± 1500 мкстрейн		
Разрешающая способность	1 мкстрейн		
Активная длина	140 мм		
Общая длина	190 мм		
Точность	± 1% измерительного диапазона		
Рабочая температура	от -10°C до +80°C		
Предельно допустимая отн. влажность	100% RH		
Возможное превышение диапазона	125% измерительного диапазона		
Степень защиты	IP 68		
Корпус	Нержавеющая сталь		
Тип термистора	YSI 44005 или эквивалентный (3 кОм при 25°C)		

Струнный датчик напряжения для арматуры

Артикул: УСМ-ТАС/УСМ-ТАС-У

- Качество передачи сигнала от датчика к регистрирующему устройству не зависит от длины кабеля (до 1,2 км)
- Полная герметичность
- Длительный срок службы, долгосрочная стабильность и надежность
- Возможность проведения измерений как в ручном режиме, так и в автоматическом (при долгосрочном дистанционном мониторинге)
- Встроенный термистор для контроля температуры
- Подходит для долговременных наблюдений после замоноличивания внутрь ж/б конструкций
- Простота установки

Струнный датчик напряжения для арматуры специально сконструирован для замоноличивания в железобетонные конструкции. Его применяют для измерения напряжений в таких конструкциях, как сваи, «стена-в-грунте», устои мостов, обделка тоннелей, дамбы, фундаменты и т.д.

Датчик работает по принципу стандартных струнных датчиков.

Он состоит из толстостенной трубы с соосно вмонтированным в нее струнным датчиком напряжения. С обеих сторон трубы встроена арматура толщиной 12 мм. Также возможна поставка датчика напряжения с арматурой диаметром 16 мм.

Датчики напряжения устанавливают, приваривая к арматурному каркасу в местах, где возможна надежная передача нагрузки с отвержденного бетона на датчик. Диаметр арматуры датчика должен соответствовать диаметру стержней арматурного каркаса.

Установка обычно про<mark>изводится попарно с каждой стороны от нейтральной оси для возможности контроля изгибающих моментов в контролируемых конструкциях.</mark>

Измерительный диапазон	2500 мкстрейн	
Разрешающая способность	1 мкстрейн	
Рабочая температура	от -10°C до +55°C	
Макс.размеры (Ø <mark>× длина)</mark>	26 мм × 1400 мм (для <mark>арматуры 12</mark> мм)	
	30 мм × 1400 мм (для арматуры 16 мм)	
Степень защиты	Струнный датчик, вмонтированный внутрь полого стержня	
Тип термистора	YSI 44005 или эквивалентный	

Струнный датчик давления грунта

Артикул: УСМ-ДГС/УСМ-ДПС

- Качество передачи сигнала от датчика к регистрирующему устройству не зависит от длины кабеля (до 1,2 км)
- Длительный срок службы, долгосрочная стабильность и надежность
- Нагрузки, действующие на корпус, не сказываются на точности измеренных показаний
- Возможность измерения большого диапазона давления
- Малое время отклика даже на небольшие изменения давления
- Небольшая толщина рабочей поверхности
- Встроенный термистор для контроля температуры

150% измерительного диапазона

Струнный датчик давления грунта предназначен для измерения давления в грунтовом массиве, а также для измерения давления между грунтом и скальными или бетонными поверхностями.

Чувствительный элемент датчика представляет собой конструкцию из двух сваренных по периметру круглых пластин из нержавеющей стали с двумя или одной активными поверхностями. Внутреннее пространство между пластинами заполнено де-аэрированной жидкостью. Элемент соединяется со струнным датчиком давления трубкой из нержавеющей стали.

Внешнее давление, приложенное к чувствительному элементу, передается посредством жидкости на струнный датчик. Изменение давления приводит к изменению

Превышение диапазона

резонансной частоты колебания стальной струны датчика при ее возбуждении электрическим импульсом, полученным от считывающего устройства или регистратора данных. С помощью электромагнитной катушки, встроенной в датчик, упругие колебания преобразуются в электрический сигнал.

Далее сигнал может быть считан как в ручном, так и дистанционном режимах.

Измерительный диапазон	0.5 1.0 2.0 3.5 5.0 10.0 МПа	
Точность	стан <mark>дартно ±0.5% измерительного д</mark> иапазона	
	под заказ ±0.1% измерительного диапазона	
Размеры (Ø × толщина)	200 мм × 7 мм	
Превышение диапа <mark>зона</mark>	150% измерительного диапазона	
Материал	Нержавеющая сталь	
Рабочая температура	от -20°С до +80°С	
Тип термистора	YSI 44005 или эквивалентный	

Струнный датчик давления для тоннельной обделки

Артикул: УСМ-ДТС

- Качество передачи сигнала от датчика к регистрирующему устройству не зависит от длины кабеля (до 1,2 км)
- Длительный срок службы, долгосрочная стабильность и надежность
- Нагрузки, действующие на корпус, не сказываются на точности измеренных показаний
- Возможность измерения большого диапазона давления
- Малое время отклика даже на небольшие изменения давления
- Встроенный стабилизатор для защиты от перепадов напряжения
- Встроенный термистор для контроля температуры

Струнный датчик давления для тоннельной обделки предназначен для установки в бетонных и набрызг-бетонных тоннельных обделках и используется для измерений радиального и тангенциального давления в них.

Чувствительный элемент датчика представляет собой конструкцию из двух сваренных по периметру прямоугольных пластин из нержавеющей стали. Внутреннее пространство между пластинами заполнено деаэрированной жидкостью.

В датчик встроена компенсаторная трубка, при обжатии которой обеспечивается плотное прилегание чувствительного элемента датчика к контролируемым поверхностям после усадки бетона при его отверждении.

Материал корпуса

Элемент соединяется со струнным датчиком давления с

помощью трубки из нержавеющей стали. Внешнее давление, приложенное к чувствительному элементу, передается посредством жидкости на струнный датчик давления. Изменение давления приводит к изменению резонансной частоты колебания стальной струны датчика при ее возбуждении электрическим импульсом, полученным от считывающего устройства или регистратора данных. С помощью электромагнитной катушки, встроенной в датчик, упругие колебания преобразуются в электрический сигнал.

Далее сигнал может быть считан как в ручном, так и дистанционном режимах.

Нержавеющая сталь

Измерительный диапазон	1.0 2.0 3.5 5.0 10.0 20.0 30.0 МПа	
Размеры	100 × 200 мм² 150 × 250 мм² 200 × 300 мм² 300 × 300 мм² под заказ	
Точность	стандартно ±0.5% измерительного диапазона	
	под заказ ±0.1% измерительного диапазона	
Р <mark>абочая темпе</mark> ратура	от -20°C до +80°C	
Компенсированная температура	от 0°C до +55°C	
Превышение диапазона	150% измерительного диапазона	
Тип термистора	YSI 44005 или эквивалентный (3 кОм при +25°C)	

Струнный датчик нагрузки с центральным отверстием

Артикул: УСМ-АНС

- Качество передачи сигнала от датчика к регистрирующему устройству не зависит от длины кабеля (до 1,2 км)
- Длительный срок службы, долгосрочная стабильность и надежность
- Возможность проведения измерений как в ручном режиме, так и в автоматическом (при долгосрочном дистанционном мониторинге)
- Широкий диапазон измерения
- Применение нескольких измерительных элементов в одном датчике уменьшает зависимость от неравномерности приложения нагрузки
- Встроенный термистор для контроля температуры

Струнный датчик нагрузки с центральным отверстием предназначен для применения в гражданском строительстве с целью измерения процессов сжатия и растяжения в анкерных болтах, балках, арматурных пучках и сваях.

Он представляет собой точный высокопрочный датчик, включающий в себя комплект из 3-х струнных измерительных модулей, расположенных под углом 120° друг к другу в цилиндрическом корпусе из мартенситной нержавеющей стали с центральным отверстием (под заказ возможно исполнение с 4-мя - 6-тью струнными модулями).

Под воздействием нагрузки меняются резонансные частоты колебания струн в струнных измерительных модулях. Данные изменения считываются электромагнитными катушками и могут быть переданы на значительные

расстояния (до 1,2 км) без искажений.

Наличие встроенного термистора позволяет отделить температурные деформации от деформаций, вызванных внешними нагрузками.

Доступны для заказа да<mark>тчики с диапаз</mark>оном измерения от 200 до 3500 кН. Под заказ возможно изготовление датчиков с более широким диапазоном и большим внутренним диаметром.

Измерительный диапазон	250 500 1000 1500 2000 3500 кН			
Внутренний диаметр	0 27 52 78 102 127 152 202 мм			
Точность калибровки	±0.25% измерительного диапазона			
Нелинейность	±1% измерительного диапазона			
Возможное превышение диапазона	150% измерительного диапазона			
Материал стержней	Нержавеющая сталь			
Рабочая температура	от -10°C до +55°C			
Подсоединяемые кабели	6-ти-жильный кабель длиной 5 м			
Тип термистора	YSI 44005 или эквивалентный (3 кОм при +25°C)			

Тензорезисторный датчик нагрузки с центральным отверстием

) д

ДАВЛЕНИЕ И НАГРУЗКА

Артикул: УСМ-АНР-Ц

- Высокая устойчивость к коррозии
- Встроенная температурная компенсация
- Конструкционное исполнение тензорезисторов в виде полного моста уменьшает зависимость от неравномерности приложения нагрузки
- Герметично запаянная под вакуумом конструкция из нержавеющей стали
- Длительный срок службы, долгосрочная стабильность и надежность
- Подходит для использования в условиях действующего строительства
- Малое время отклика даже на небольшие изменения давления

Тензорезисторный датчик нагрузки с центральным отверстием предназначен для применения в гражданском строительстве с целью измерения процессов сжатия и растяжения в анкерных болтах, балках, арматурных пучках и сваях

Он представляет собой точный высокопрочный датчик, включающий в себя комплект из 8-ми тензорезисторов, сконфигурированных как мост сопротивления и расположенных под углом 45° в цилиндрическом корпусе из мартенситной нержавеющей стали с центральным отверстием.

Под воздействием внешней нагрузки сопротивление тензорезисторов меняется. При этом сигнал на выходе прямо пропорционален приложенной нагрузке.

Также в датчик встроена система компенсации от температурных воздействий.

Доступны для заказа датчи<mark>ки с диапазоном измерения от</mark> 200 до 2000 кН, под заказ во<mark>зможно изготовление датчиков с более широким диапазоном и большим внутренним диаметром.</mark>

Измерительный диапазон	200/40 500/52 1000/78 1000/105 1500/85 1500/130 2000/105 2000/155 кН/внутр.диаметр, мм	
Возможное превы <mark>шение диапазона</mark>	150% измерительного диапазона	
Точность калибровки	±0.25% измерительного диапазона	
Нелинейность	±1% измерительного диапазона	
Выходная мощность	2 MB/ B ± 10%	
Возбуждение	10 В постоянного тока (максимум 20 В)	
Рабочая температура	от -20°С до +80°С	
Входное сопротивление	770 Ом ± 5%	
Выходное сопротивление	770 Ом ± 1%	

Тензорезисторный датчик для измерения сжимающих нагрузок

Артикул: УСМ-СНР

- Высокая устойчивость к коррозии
- Встроенная температурная компенсация
- Конструкционное исполнение тензорезисторов в виде полного моста уменьшает зависимость от неравномерности приложения нагрузки
- Герметично запаянная под вакуумом конструкция из нержавеющей стали
- Длительный срок службы, долгосрочная стабильность и надежность
- Подходит для использования в условиях действующего строительства
- Малое время отклика даже на небольшие изменения нагрузки

Тензорезисторный датчик для измерения сжимающих нагрузок предназначен для применения в гражданском строительстве с целью измерения сжимающих и осевых нагрузок, в частности, при испытаниях свай.

Он представляет собой точный высокопрочный датчик колонного типа с цилиндрическим корпусом из мартенситной нержавеющей стали и имеет плоское основание. Датчик обладает повышенным сопротивлением к внешним нагрузкам, что увеличивает его долговечность, облегчает монтаж и снижает вероятность возникновения ошибок при снятии показаний. Он защищен от пыли, влаги и других неблагоприятных условий окружающей среды.

В датчике используются фольговые тензорезисторы, которые прикрепляются специальным прочным эпоксидным

составом к корпусу датчика. Тензорезисторы расположены по кругу в виде моста Витстона с сопротивлением 700 Ом.

Под воздействием нагрузки сопротивление тензорезисторов меняется. При этом сигнал на выходе прямо пропорционален приложенной нагрузке.

Также в датчик встроена система компенсации от температурных воздействий.

Для заказа доступны стандартные датчики с диапазоном измерения от 1000 до 3500 кН, под заказ возможно изготовление датчиков с более широким диапазоном и большим внутренним диаметром.

Измерительный диапазон	1000 1500 2000 3000 3500 кН		
Возможное превышение диапазона	150% измерительного диапазона		
Нелинейность	±1% измерительного диапазона		
Выходная мощно <mark>сть</mark>	1,5 мВ/ В ± 10%		
Возбуждение	10 В постоянного тока (максимум 20 В)		
Входное сопротивление	770 Ом ± 5%		
Выходное сопротивление	700 Ом ± 1%		
Рабочая температура	от -20°С до +80°С		
Подсоединяемые кабели	4-х-жильный кабель длиной 2 м		

Струнный датчик температуры

Артикул: УСМ-СДТ

- Качество передачи сигнала от датчика к регистрирующему устройству не зависит от длины кабеля (до 1,2 км)
- Длительный срок службы, долгосрочная стабильность и надежность при низкой стоимости
- Возможность проведения измерений как в ручном режиме, так и в автоматическом (при долгосрочном дистанционном мониторинге)
- Герметически запаянная под вакуумом конструкция из нержавеющей стали
- Высокая линейность и гистерезис

Струнный датчик температуры предназначен для измерения температуры в бетонных конструкциях, грунтовых массивах или водной среде. Он имеет высокую точность – не менее, чем 0.1°C.

Датчик работает по принципу стандартных струнных датчиков; кроме того, в нем используется свойство разнородных металлов иметь различные линейные коэффициенты расширения при нагревании.

Изменения температуры приводят к изменению резонансной частоты колебания стальной струны датчика при ее возбуждении электрическим импульсом, полученным от считывающего устройства или регистратора данных. С помощью электромагнитной катушки, встроенной в датчик, упругие колебания преобразуются в электрический сигнал.

Далее сигнал может быть с<mark>читан как в ручном, так и</mark> дистанционном режимах.

Измерительный диапазон	от -20°С до +80°С	
Точность калибровки	стандартно ±0.5% измерительного диапазона под заказ ±0.1% измерительного диапазона	
Активное сопротивление катушки	120 - 150 Ом	
Сопротивление из <mark>оляции</mark>	>500 М Ом при 12 В	
Допустимый диапазон влажности	0-100 % относительной влажности (RH)	
<mark>Допустимый ур</mark> овень вибрации	2 g, 50 - 500 Гц	
Корпус	Нержавеющая сталь с защитой IP 68	
Защита от перенапряжения	Разрядник для защиты от перепадов напряжения и ударов молнии	

Автоматизированная система мониторинга вибраций «Тритон»

Артикул: УСМ-ССВ

- Анализ результатов измерений вибраций в режиме реального времени
- Оповещение о превышении заданных пороговых значений
- Оценка степени опасности вибрационного воздействия на объект на основе комплексного анализа данных со всех модулей (оповещение при землетрясениях, техногенных воздействях и др.)
- Гибкая архитектура системы
- Оинхронная работа всех модулей, входящих в систему
- Отсутствие ограничений на количество измерительных модулей, входящих в систему
- Удаленная настройка параметров работы каждого измерительного модуля
- Многоступенчатая защита от потери данных

Автоматическая система мониторинга вибраций «Тритон» предназначена для организации круглосуточного контроля вибрационных процессов на различных объектах: тоннели (автомобильные, ж/д, метрополитена), заглубленные и высотные сооружения, здания, находящиеся в зоне влияния строительных работ, и др.

Система включает измерительные модули, выполненные в защищенном всепогодном корпусе, трехосевые датчики вибрации, сервер времени, сервер обработки и хранения данных с установленным специализированным программным обеспечением.

Измерительные модули в режиме реального времени производят цифровую фильтрацию и анализ амплитуд электрических сигналов, поступающих от трехосевых

датчиков вибраций, а также передают результаты обработки на центральный сервер.

Применяемый в системе мониторинга «Тритон» комплексный подход к анализу данных позволяет проводить синхронные измерения параметров вибрационных процессов во многих точках, расположенных на больших расстояниях друг от друга.

Измерительный диапазон датчика	±490 м/с²
Разрядность АЦП измерительного модуля	24 бит
Количество каналов измерительного модуля	3 шт.
Время автономно <mark>й работы от а</mark> ккумулятора измерительного модуля	4 ч
Диапазон рабочих температур измерительного модуля	от -20°С до +40°С
Количество полосовых фильтров	до 5 шт.
Частота дискретизации АЦП измерительного модуля	20 кГц

ДЛЯ ЗАПИСЕЙ

Контактная информация

ЗАО «Триада-Холдинг», 123308, Москва, пр-т Маршала Жукова, 6 стр.2

Телефон факс: (499)192-0253, (499) 946-3392, (495) 956-1504

Web: www.triadaholding.ru, www.monitoring.city

E-mail: usm@triadaholding.ru